Étude et rapport

An integrated nomogram combining deep learning, Prostate Imaging–Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: a retrospective multicentre study

GRATUIT

Auteur(s) :

Amogh Hiremath, Rakesh Shiradkar, Pingfu Fu, Amr Mahran, Ardeshir R Rastinehad, Ashutosh Tewari, Sree Harsha Tirumani, Andrei Purysko, Lee Ponsky, Anant Madabhushi

Éditeur(s) :

THE LANCET

Date de publication :01/07/2021

10 pages

EN BREF ...

"Biparametric MRI, which comprises T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted imaging, is increasingly being used for the detection and characterisation of prostate cancer. The Prostate Imaging–Reporting and Data System (PI-RADS) has standardised the diagnosis of prostate cancer using MRI and is effective for characterisation of prostate cancer. However, MRI is still restricted by benign confounding appearances and substantial intra-reader and inter-reader variability. Therefore, Gleason grade grouping (GGG), which assigns a prostate cancer lesion to one of five categories based on invasive biopsies, remains the standard of care in determining the aggressiveness of prostate cancer. According to the 2017 European Association of Urology prostate cancer guidelines, patients with intermediate- risk and high-risk prostate cancer with clinically signifi- cant disease (defined as GGG ≥2 on pathology) are recommended a definitive treatment, such as radical prostatectomy, whereas those with very low-risk or low-risk disease (clinically insignificant prostate cancer, defined as GGG 1) and some with intermediate favourable risk (GGG 2) are recommended to follow an active surveillance strategy wherein patients are closely monitored without being provided any definitive treatment." En bref issu de l'étude.

Rédacteur(s) de la fiche : Beesens TEAM


Introductio

1 - In tincidunt nunc ac velit tristique

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

2 - Sed lobortis elit vitae mollis consectetur

  • In tincidunt nunc ac velit tristique
  • Donec accumsan elit ac ornare eleifend
  • Sed pellentesque suscipit quam ut finibus
  • Fusce imperdiet neque sit amet ipsum ullamcorper scelerisque

3 - Lorem ipsum dolor sit amet

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

Conclusio

Abonnements Beesens

Accéder à :

  • L'ensemble de la veille e-santé sélectionnée
    par la communauté Beesens,
  • Des documents de références de la e-santé,
  • Et bien plus encore...
JE M'INSCRIS GRATUITEMENT VOIR TOUS NOS ABONNEMENTS

Déjà inscrit ? Identifiez-vous

Également accessible aux abonnés PREMIUM