Étude et rapport

Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome

GRATUIT

Auteur(s) :

Edi Prifti, Ahmad Fall, Giovanni Davogustto, Alfredo Pulini, Isabelle Denjoy, Christian Funck-Brentano, Yasmin Khan, Alexandre Durand-Salmon, Fabio Badilini, Quinn S Wells, Antoine Leenhardt, Jean-Daniel Zucker, Dan M Roden, Fabrice Extramiana, Joe-Elie Salem

Éditeur(s) :

OXFORD ACADEMIC

Date de publication :01/09/2021

1 pages

EN BREF ...

"Congenital long-QT syndromes (cLQTS) or drug-induced long-QT syndromes (diLQTS) can cause torsade de pointes (TdP), a life-threatening ventricular arrhythmia. The current strategy for the identification of drugs at the high risk of TdP relies on measuring the QT interval corrected for heart rate (QTc) on the electrocardiogram (ECG). However, QTc has a low positive predictive value." En bref issu de l'étude.

Rédacteur(s) de la fiche : Beesens TEAM


Introductio

1 - In tincidunt nunc ac velit tristique

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

2 - Sed lobortis elit vitae mollis consectetur

  • In tincidunt nunc ac velit tristique
  • Donec accumsan elit ac ornare eleifend
  • Sed pellentesque suscipit quam ut finibus
  • Fusce imperdiet neque sit amet ipsum ullamcorper scelerisque

3 - Lorem ipsum dolor sit amet

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

Conclusio

Abonnements Beesens

Accéder à :

  • L'ensemble de la veille e-santé sélectionnée
    par la communauté Beesens,
  • Des documents de références de la e-santé,
  • Et bien plus encore...
JE M'INSCRIS GRATUITEMENT VOIR TOUS NOS ABONNEMENTS

Déjà inscrit ? Identifiez-vous

Également accessible aux abonnés PREMIUM