Étude et rapport

Machine learning powers biobank-driven drug discovery

GRATUIT

Auteur(s) :

NATURE

Éditeur(s) :

NATURE

Date de publication :01/09/2022

2 pages

EN BREF ...

"Drug hunters are moving into the clinic with human-first ‘no-hypothesis’ target discovery, applying the full force of machine learning to massive collections of human omics data. Agrowing cadre of companies are betting that artificial intelligence (AI)-based algorithmic strategies can complement hypothesis-driven drug target discovery. In April BioAge Labs announced that they had dosed their first trial participant with a drug designed to treat muscle atrophy, identified through AI analysis of clinical and omics data collected from a cohort of patients in a human aging study. In traditional drug development, companies typically start out with a target and a mechanism identified and validated in preclinical studies.This forces them to make a heavy bet on whether these same genes or proteins are actually implicated in patients’ pathologies. But a rising generation of startups is applying machine learning (ML) to rich collections of clinical and molecular data without following a preconceived hypotheses. “The vast majority of what we’re doing is hypothesis-generating and hypothesis- free,” says Jeanne Magram, CSO of Celsius Therapeutics, an ML-driven drug discovery company." En bref issu de l'étude.

Rédacteur(s) de la fiche : Beesens TEAM


Introductio

1 - In tincidunt nunc ac velit tristique

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

2 - Sed lobortis elit vitae mollis consectetur

  • In tincidunt nunc ac velit tristique
  • Donec accumsan elit ac ornare eleifend
  • Sed pellentesque suscipit quam ut finibus
  • Fusce imperdiet neque sit amet ipsum ullamcorper scelerisque

3 - Lorem ipsum dolor sit amet

  • Pellentesque congue, magna elementum suscipit vestibulum
  • Aenean eleifend sodales ipsum vitae consequat
  • Quisque est leo tempus vel purus eu, placerat tincidunt nisl

Conclusio

Abonnements Beesens

Accéder à :

  • L'ensemble de la veille e-santé sélectionnée
    par la communauté Beesens,
  • Des documents de références de la e-santé,
  • Et bien plus encore...
JE M'INSCRIS GRATUITEMENT VOIR TOUS NOS ABONNEMENTS

Déjà inscrit ? Identifiez-vous

Également accessible aux abonnés PREMIUM